BKV DNA QUANTITATION (QT)

PCR en tiempo real para la cuantificación del genoma del virus BK (VBK)

ADN DE VBK

A. OBJETIVO DEL EQUIPO.

El equipo de PCR en tiempo real para cuantificación de ADN de VBK, con código BKVDNAQT.CE, ha sido desarrollado para la detección cuantitativa de ADN del virus BK en plasma y orina humanos con un control simultáneo de la reacción de amplificación/extracción a través de un Control Interno (IC). El equipo se ha adaptado para el uso en termocicladores Real-Time y ABI 7500 Sequence Detection System® (software SDS, versión 1.3.1, Applied Biosystems™*), MX3000P (software MxPro, versión 4.01, Stratagene™***) o CFX96 (Software CFX manager versión 1.7, Biorad™**).

B. INTRODUCCIÓN.

El poliomavirus BK humano (Polyomavirus hominis 1) pertenece al género Polyomaviridae, que son virus de ADN no encapsulado que contienen ADN de cadena doble circular de 5 Kb aproximadamente. Se identificó por primera vez en 1970 en la orina de un receptor de injerto renal llamado BK, que desarrolló estenosis uretral.

La infección por el virus BK se produce durante los primeros años de infancia. Es asintomática o se asocia con fiebre y síntomas leves de las vías respiratorias superiores. Hasta el 90% de los adultos son seropositivos. Se cree que la transmisión se produce por vía respiratoria, pero aún no se ha demostrado formalmente.

Tras la infección primaria, el virus BK entra en estado latente y reside en las células uroepiteliales y posiblemente en linfocitos. Son posibles otros reservorios de infección latente, pero actualmente no se conocen. El virus permanece inactivo a menos que se imponga un estado natural o iatrogénico de inmunosupresión. Se ha detectado la presencia del VBK en la orina de mujeres embarazadas y ancianos. La presencia del virus también se detecta frecuentemente en la población con VIH/SIDA. La mayor incidencia de la presencia del virus ocurre en pacientes con transplante de órgano sólido y de médula ósea. Debido al tropismo del virus BK por el epitelio genitourinario, la manifestación más común es la enfermedad del tracto genitourinario. El VBK puede provocar cistitis hemorrágica, estenosis uretral y nefritis túbulointersticial, que en caso de transplante renal puede llevar a un fallo irreversible del injerto.

Aunque durante décadas se ha utilizado la citología de orina para la detección de células señuelo, han aparecido otras modalidades de diagnóstico para detectar el VBK, incluyendo biopsia de tejidos, cultivo viral v serología. En los últimos años, ensavos moleculares. como los ensayos PCR en tiempo real, también han demostrado ser una herramienta útil para la detección/cuantificación del virus BK gracias a su alta sensibilidad, especificidad, facilidad de uso y a su método rápido.

C. PRINCIPIOS DEL ENSAYO.

El equipo BKVDNAQT.CE se basa en una química en tiempo real que utiliza cebadores y sondas específicas.

El ADN de VBK, recuperado de una muestra biológica en investigación en una fase de extracción, se amplifica utilizando un sistema de amplificación en tiempo real. El producto amplificado se detecta y se cuantifica comparándolo con la curva estándar, utilizando una sonda con tinte indicador fluorescente específica para una secuencia genómica única del VBK.

Control Interno (IC) como control de sirve amplificación/extracción procesada cada muestra para individualmente con el fin de identificar inhibidores de la reacción. Se suministra una curva estándar externa que permite la determinación de la carga viral.

D. COMPONENTES

El formato estándar del producto, código BKVDNAQT.CE, contiene reactivos suficientes para realizar 50 pruebas.

Componente	Contenido	BKVDNAQT.CE 50 reacciones
A CÓDIGO: ALL/MM-4 CÓDIGO COLOR: TRANSPARENTE	Mezcla maestra	Viales n.º 1 / 0,825ml
B CÓDIGO: BKV/CB CÓDIGO COLOR: AMARILLO	Cebadores/sondas liofilizados	Viales n.º 2 (Disolver con el volumen de ALL/C indicado en la etiqueta del vial)
C CÓDIGO: ALL/C CÓDIGO COLOR: ROJO	Agua grado molecular	Viales n.º 4 / 1,5 ml
NTC CÓDIGO: ALL/NTC CÓDIGO COLOR: BLANCO	Control negativo	Viales n.º 1 / 1,5 ml
STD Estándar de cuantificación (2.5x10 ⁵ copias/µI) CÓDIGO: BKV/STD CÓDIGO COLOR: ROJO	Estándar cuantitativo liofilizado	Viales n.º 6 (Disolver con el volumen de ALL/C indicado en la etiqueta del vial)
IC Control Interno CÓDIGO: ALL/IC CÓDIGO COLOR: VERDE	Control interno liofilizado	Viales n.º 2 (Disolver con el volumen de ALL/C indicado en la etiqueta del vial)
Manual de instrucciones	Instrucciones de uso	1

Nota importante: A petición, Dia. Pro puede suministrar reactivos para 25, 100, 150 pruebas, como se indica a continuación:

1. Componente A 2. Componente B 3. Componente C 4. NTC 5. IC 6. STD 7. Manual instrucc.	Vial n.º 1 / 0,4 ml Vial n.º 1 Viales n.º 2 / 1,5 ml Viales n.º 1 / 1,5 ml Vial n°1 Viales n°3 n.º 1	Viales n.º 2/ 0,825 ml Viales n.º 4 Viales n.º 4 / 1,5 ml Vial n.º 1 / 1,5 ml Viales n.º 4 Viales n.º 4	Viales n.º 3 / 0,825 ml Viales n.º 6 Viales n.º 6 / 1,5 ml Vial n.º 1 / 1,5 ml Viales n.º 6 Viales n.º 6 n.º 1
Número de pruebas	25	100	150
Código	BKVDNAQT.CE.25	BKVDNAQT.CE.100	BKVDNAQT.CE.150

E. ALMACENAMIENTO Y ESTABILIDAD

El equipo BKVDNAQT.CE debe almacenarse a +2...8 °C Una vez disueltos, el Componente B (código BKV/CB) y el Componente IC (código ALL/IC) se mantienen estables durante 4 meses a -20 °C. Una vez disuelto, el Componente STD (código BKV/STD) se mantiene estable durante 2

^{*} Applied Biosystems es una marca comercial registrada y ABI PRISM^óes una marca comercial de Applera Corporation o sus filiales en EE.UU. y/o en otros países determinados.

^{***} Biorad es una marca comercial registrada. ***Stratagene es una marca comercial registrada.

semanas a -20 °C. Si los componentes se van a utilizar solo de forma intermitente, deberían congelarse en alícuotas. Evitar ciclos de congelación/descongelación repetidos. Solo se permite descongelar una vez.

F. MATERIALES NECESARIOS NO SUMINISTRADOS.

- 1. Micropipetas calibradas (0,5 μl < volumen < 1000 μl)
- 2. Equipo de extracción de ADN
- 3. MG EtOH
- 4. Bloque térmico
- 5. Microcentrífuga
- 6. Racks para tubos
- 7. Puntas filtradas estériles con barrera contra aerosoles
- 8. Microtubos libres de nucleasa
- Microtubos de 0,2 ml recomendados por los fabricantes de los instrumentos PCR en tiempo real
- 10. Guantes desechables, sin polvo
- 11. Termociclador Real-Time PCR (*)
- 12. Papel absorbente.
- 13. Vórtex o similar.

(*) <u>Atención:</u> Se debe realizar de forma rutinaria una calibración válida de los tintes puros (archivo del componente del espectro puro) y del fondo (archivo del componente de fondo).

G. ADVERTENCIAS Y PRECAUCIONES

- El equipo sólo debe ser usado por personal técnico adecuadamente entrenado, bajo la supervisión de un médico responsable del laboratorio.
- El personal técnico debe tener una amplia formación en el uso de termocicladores Real-Time, en la manipulación de reactivos para biología molecular y en los protocolos de amplificación de PCR en tiempo real.
- El equipo debe utilizarse en un laboratorio certificado y homologado por la autoridad nacional en este campo (Ministerio de Sanidad o entidad similar) para realizar este tipo de análisis.
- 4. Todo el personal que participe en la realización de los ensayos deberá llevar la indumentaria protectora adecuada del laboratorio, guantes sin polvo y gafas. Evitar el uso de objetos cortantes (cuchillas) o punzantes (agujas). El personal debe ser adiestrado en procedimientos de bioseguridad, según ha sido recomendado por el Centro de Control de Enfermedades de Atlanta, Estados Unidos, y publicado por el Instituto Nacional de Salud: "Biosafety in Microbiological and Biomedical Laboratories", ed. 1984.
- Todo el personal involucrado en el manejo de muestras debe estar vacunado contra HBV y HAV, para lo cual existen vacunas disponibles, seguras y eficaces.
- Se debe controlar el entorno del laboratorio para evitar la contaminación por polvo o agentes microbianos en el aire.
- Los componentes A y B son sensibles a la luz. Protegerlos de la exposición a la luz intensa.
- Evitar vibraciones de la superficie de la mesa de trabajo donde se realiza la prueba.
- Tras la recepción, conservar el equipo a una temperatura entre 2,8 °C en un refrigerador o en una cámara de refrigeración con control de temperatura.
- No intercambiar componentes de diferentes lotes ni tampoco de distintos equipos del mismo lote.
- Comprobar que los reactivos no contengan precipitados ni agregados en el momento del uso. De darse el caso, informar al responsable para realizar el procedimiento pertinente y reemplazar el equipo.
- Evitar contaminación cruzada entre muestras usando puntas desechables y cambiándolas después de cada uso.
- Evitar contaminación cruzada entre los reactivos del equipo usando puntas desechables y cambiándolas depués de cada uso
- No usar el producto después de la fecha de caducidad indicada en la etiqueta del envase externo.

- 15. Tratar todas las muestras como potencialmente infectivas. Las muestras de suero/sangre/plasma humano deben ser manipuladas al nivel 2 de bioseguridad, según ha recomendado el Centro de control de enfermedades de Atlanta, EE.UU., y de conformidad con lo publicado por los Institutos nacionales de la salud: "Biosafety in Microbiological and Biomedical Laboratories", ed. 1984.
- Almacenar y extraer las muestras separadas de los demás reactivos y usar un espacio separado para su manipulación
- Disolver los reactivos liofilizados con la cantidad correcta, indicada en las etiquetas, de agua grado molecular (componente C, código: ALL/C) suministrado con el equipo.
- Llevar a cabo todas las operaciones lo más rápido posible, manteniendo los componentes en hielo o en un bloque de refrigeración.
- 19. El flujo de trabajo en el laboratorio debe ser unidireccional, comenzando en la zona de extracción y avanzando hasta la zona de amplificación y de análisis de datos. No devolver las muestras, equipos o reactivos a la zona donde se hayan realizado las fases anteriores.
- Se recomienda el uso de material plástico desechable para la preparación de los componentes líquidos y para la transferencia de los componentes a los diferentes equipos automatizados para evitar contaminación cruzada.
- 21. Los desechos producidos durante el uso del equipo deben ser eliminados según lo establecido por las directivas nacionales y las leyes relacionadas con el tratamiento de los residuos químicos y biológicos de laboratorio. Especialmente, los desechos líquidos procedentes de los procedimientos de extracción de muestras deben ser tratados como material potencialmente infeccioso y deben ser inactivados antes de su eliminación. No poner en contacto los desechos de la extracción con lejía.
- 22. En caso de derrame accidental de algún producto, se debe utilizar papel absorbente embebido en lejía y posteriormente en agua. El papel debe eliminarse en contenedores designados para este fin en hospitales y laboratorios.
- 23. Otros materiales de desecho generados (por ejemplo: puntas usadas para las muestras) deben ser manipulados como potencialmente infecciosos y deben eliminarse de acuerdo con las directivas y leyes nacionales sobre los residuos de laboratorio.

H. MUESTRA: PREPARACIÓN Y RECOMENDACIONES

- Extraer la sangre asépticamente por punción venosa y preparar el plasma según las técnicas estándar de preparación de muestras para laboratorios de análisis clínicos.
- No se ha detectado ninguna influencia en la preparación de la muestra con citrato, EDTA.
 - Atención: La heparina (>10 IU/ml) afecta a las reacciones de PCR.
 - Las muestras recogidas en tubos que contengan heparina como anticoagulante no deben usarse. Por lo tanto, las muestras de pacientes heparinizados no deben usarse.
- Evitar cualquier adición de conservantes a las muestras.
- Las muestras deben ser identificadas claramente mediante código de barras o nombres, a fin de evitar errores en los resultados.
- Las muestras hemolizadas (color rojo) o hiperlipémicas (aspecto lechoso) deben ser descartadas para evitar falsos resultados. al igual que aquellas donde se observe la presencia de precipitados, restos de fibrina o filamentos microbianos.
- 6. El plasma y la orina, si no se usan inmediatamente, deben almacenarse en alícuotas a una temperatura de -20 °C a -80 °C tras la extracción. Las muestras pueden almacenarse a -80 °C durante varios meses. Las muestras congeladas no se deben descongelar más de una vez, ya que podría afectar al resultado de la prueba.
- Las muestras de plasma para extracción de ADN deben recogerse de acuerdo con los procedimientos comunes del laboratorio, y transportarse y almacenarse a una temperatura de

- +2 °C a +8 °C durante un período máximo de 4 horas. Las muestras de plasma pueden almacenarse a -20 °C durante un período máximo de 30 días, o a -70 °C para períodos más largos.
- Para un almacenamiento óptimo de las muestras, recomendamos dividirlas en varias alícuotas (volumen mínimo 300 μl) y almacenarlas a -20 °C durante un período máximo de 30 días, o a -70 °C para períodos más largos. Evitar ciclos de congelación/descongelación repetidos.
- Al utilizar muestras congeladas, descongelar las muestras justo antes de la extracción para evitar posibles casos de degradación de los ácidos nucleicos.

I. PREPARACIÓN DE LOS COMPONENTES Y PRECAUCIONES.

Mezcla maestra:

<u>Componente A</u>. Listo para el uso. Mezclar bien con un vórtex antes de usar y centrifugar brevemente para recoger el volumen completo.

ADVERTENCIA: El componente A es sensible a la luz. Protegerlo de la exposición a la luz intensa.

Cebadores/Sondas:

Componente B.

- Centrifugar el vial durante 1 minuto a 11000 rpm
- Abrir con cuidado la tapa del vial evitando la dispersión del polvo.
- Disolver de forma homogénea el componente B liofilizado con el volumen de componente C (código: ALL/C) indicado en la etiqueta del vial.
- Mantener la disolución en la parte superior de la mesa de trabajo durante al menos 10 minutos a temperatura ambiente (15 °C < RT < 25 °C)
- Mezclar brevemente con un vórtex

ADVERTENCIA: El componente B es sensible a la luz. Protegerlo de la exposición a la luz intensa.

Aqua grado molecular:

Componente C. Listo para el uso.

Control negativo:

NTC. Listo para el uso.

Curva estándar:

STD

- Centrifugar el vial durante 1 minuto a 11000 rpm
- Abrir con cuidado la tapa del vial evitando la dispersión del polvo.
- Disolver de forma homogénea el STD liofilizado con el volumen de componente C (código: ALL/C) indicado en la etiqueta del vial.
- Mantener la disolución en la parte superior de la mesa de trabajo durante al menos 10 minutos a temperatura ambiente (15 °C < RT < 25 °C)
- Mezclar brevemente con un vórtex
- Preparar 4 tubos libres de nucleasa para la preparación de la curva estándar
- Establecer una dilución de serie STD 1:10 en el componente C (código: ALL/C) para obtener los puntos de la curva estándar, como se describe en la siguiente tabla:

	Preparación de la curva estándar		
STD	Calibrador 250000 copias/ µl	Añadir el volumen de componente C (código: ALL/C) como se indica en la etiqueta del vial	
STD 1	25000 copias/ µl	10 µl (STD) + 90 µl de componente C (Código: ALL/C)	
STD 2	2500 copias/ μΙ	10 μl (STD 1) + 90 μl de componente C (Código: ALL/C)	
STD 3	250 copias/ μl	10 μl (STD 2) + 90 μl de componente C (Código: ALL/C)	
STD 4	25 copias/ μl	10 µl (STD 3) + 90 µl de componente C (Código: ALL/C)	

Control interno:

<u>IC</u>

- Centrifugar el vial durante 1 minuto a 11000 rpm
- Abrir con cuidado la tapa del vial evitando la dispersión del polvo.
- Disolver de forma homogénea el IC liofilizado con el volumen de componente C (código: ALL/C) indicado en la etiqueta del vial.
- Mantener la disolución en la parte superior de la mesa de trabajo durante al menos 10 minutos a temperatura ambiente (15 °C < RT < 25 °C)
- Mezclar brevemente con un vórtex

L. INSTRUMENTOS Y EQUIPAMIENTO UTILIZADOS EN COMBINACIÓN CON EL EQUIPO.

- Las micropipetas deben estar calibradas para dispensar correctamente el volumen requerido en el ensayo y sometidas a una descontaminación periódica de las partes que pudieran entrar accidentalmente en contacto con la muestra o los reactivos (alcohol al 70%, lejía al 10%, desinfectantes de calidad hospitalaria). Además, deben revisarse regularmente para mantener una precisión del 1% y una confiabilidad de +/- 5%.
- 2. Dispositivo de extracción: El equipo BKVDNAQT.CE ha sido diseñado para usarse sólo con QIAamp DNA Minikit, código 51306, (QIAGEN), NucleoSpin Blood kit, código: 740951(Macherey-Nagel) y NA Body Fluid Kit código D-2021 (Dia.Pro es distribuidor de Chemagen). Los usuarios finales deben seguir estrictamente las instrucciones de uso suministradas por los fabricantes.
- 3. Termocicladores Real-Time y software de los instrumentos. El equipo BKVDNAQT.CE ha sido diseñado para usarse solo con los termocicladores Real Time ABI 7500, software SDS, versión 1.3.1 (Applied Biosystems), MX3000P, software MxPro, versión 4.01 (Stratagene) y CFX96 RTS, software CFX manager, versión 1.7 (Biorad). Los usuarios finales deben seguir estrictamente las instrucciones de uso de los instrumentos suministradas por los fabricantes.

M. OPERACIONES Y CONTROLES PREVIOS AL ENSAYO.

- 1. Comprobar la fecha de caducidad indicada en la etiqueta externa de la caja del equipo. No usar si ha caducado.
- 2. Comprobar que los componentes líquidos no estén contaminados con partículas o agregados observables a simple vista. Comprobar que en la parte inferior de los viales de los componentes liofilizados haya un agregado bien formado. Comprobar que no se han producido roturas ni derrames de líquido dentro de la caja durante el transporte.
- Disolver los componentes liofilizados con la cantidad adecuada de componente C (código: ALL/C) como se describe en la sección correspondiente (I).
- Encender los termocicladores, comprobar la configuración y asegurarse de que se usa el protocolo de ensayo correcto.
- Seguir estrictamente los manuales de los instrumentos suministrados por los fabricantes para la configuración correcta de los termocicladores Real-Time.
- Comprobar que las micropipetas estén fijadas en el volumen requerido.
- Asegurarse de que el equipamiento a usar esté en perfecto estado, disponible y listo para el uso.
- En caso de surgir algún problema, se debe detener el ensayo y avisar al responsable.

N. PROCEDIMIENTO DEL ENSAYO.

El ensayo debe realizarse de acuerdo con lo indicado a continuación.

N.1 Extracción de ADN

La fase de extracción del ADN genómico de VBK debe realizarse exclusivamente en combinación con los siguientes equipos:

Herramientas para extracción manual

Material	Descripción	Código del equipo	Fabricante
Plasma/orina	Nucleospin Blood	740951	MN™
Plasma/orina	QIAamp DNA mini kit®	51306	Qiagen™

Herramienta para extracción automática en combinación con el instrumento DIA.FASTEX

Material	Descripción	Código del equipo	Fabricante
Plasma/orina	NA Body Fluid Kit	D-2021	Chemagen distribuido por Dia.Pro

El aislamiento de ADN debe realizarse sólo de acuerdo con las instrucciones del fabricante (QIAGEN™, MN™, Dia.Pro).

<u>Nota importante</u>: Los siguientes volúmenes deben usarse estrictamente en los procedimientos de extracción para ambos equipos:

Descripción	Volumen muestra µl	Volumen elución µl
Nucleospin Blood	200	100
QIAamp DNA mini kit®	200	100
NA Body Fluid Kit	200	100

El ADN obtenido de las muestras, no usado en la serie, debe almacenarse congelado (de -20 °C a -80 °C).

Nota importante: El IC del equipo BKVDNAQT.CE puede usarse en el procedimiento de aislamiento como control de extracción.

El valor Ct del control interno se usa para evaluar si el procedimiento de extracción de ADN se ha realizado correctamente (véase sección Q).

Para esta aplicación:

MUESTRAS DE PLASMA

- Nucleospin Blood y QlAamp DNA mini kit : añadir 5 µl de lC a la mezcla de tampón de lisis y muestra, y proceder siguiendo las instrucciones del manual proporcionado por el fabricante del equipo de extracción.
- NA Body Fluid Kit: añadir 5 µl de IC a la mezcla de tampón de lisis y muestra y proceder siguiendo las instrucciones del manual proporcionado por el fabricante del equipo de extracción (Protocolo de Plasma)

MUESTRAS DE ORINA

- Nucleospin Blood y QIAamp DNA mini kit : añadir 10 µl de IC a la mezcla de tampón de lisis y muestra, y proceder siguiendo las instrucciones del manual proporcionado por el fabricante del equipo de extracción
- NA Body Fluid Kit: añadir 10 µl de IC a la mezcla de tampón de lisis y muestra y proceder siguiendo las instrucciones del manual proporcionado por el fabricante del equipo de extracción (Protocolo de Plasma)

N.2 Configuración de la reacción

El equipo **BKVDNAQT.CE** ha sido diseñado para usarse solo con ABI 7500, software SDS, versión 1.3.1 (Applied Biosystems), MX3000P, software MxPro, versión 4.01 (Stratagene) y CFX96 software CFX manager versión 1.7 (Biorad).

N.2.1 Preparación de PCR

<u>Importante:</u> En la sección O se incluye un ejemplo de esquema de dispensación. Consúltelo antes de leer las instrucciones siguientes.

- Preparar los componentes como se describe en la sección I;
- Preparar el número requerido de tubos de reacción o una placa de reacción de 96 pocillos para las muestras en evaluación y para la curva estándar (preparada como se describe en la sección I).

Nota importante: Usar sólo tubos ópticos o microplacas sugeridos por los fabricantes de los termocicladores Real-Time.

- Tener en cuenta que las muestras deberían comprobarse en duplicado, siempre que sea posible;
- Incluir al menos 1 tubo para el NTC (control negativo)
- Preparar la mezcla de amplificación para muestras,
 NTC y curva estándar según la siguiente tabla:

Rev. 6

Preparación de la mezcla de amplificación (IC como control de amplificación)

Número de reacciones		x1	x12
Α	Mezcla maestra	12,5 µl	150 µl
В	Cebadores/Sondas	2 µl	24 µl
IC	Control Interno	0,5 µl	6 µl
Vol. total		15 µl	180 µl

<u>Nota importante</u>: Si el control interno se añadió durante el procedimiento de aislamiento del ADN, preparar la <u>mezcla de amplificación</u> para **muestras** según la siguiente tabla:

Preparación de la mezcla de amplificación (IC como control de extracción/amplificación)

Número de reacciones		x1	x12
Α	Mezcla maestra	12,5 µl	150 µl
В	Cebadores/Sondas	2 μΙ	24 µl
С	Agua grado molecular	0,5 µl	6 µl
Vol. total		15 µl	180 µl

N.2.2 Procedimiento de amplificación

- Dispensar 15 µl de la mezcla de amplificación en cada tubo de reacción o pocillo de la microplaca
- Añadir 10 μl de las muestras, NTC y curva estándar a los tubos de reacción.
- Cerrar bien los tubos de reacción
- Centrifugar brevemente los tubos de reacción a 2000 rpm.
- No dejar los tubos de reacción a temperatura ambiente (RT) durante más de 30 minutos ni exponer a la luz (cubrir los tubos).
- Cargar los tubos en el soporte del bloque térmico del termociclador Real-Time.
- Tras las operaciones de configuración descritas en la sección N3 (Programación del instrumento), iniciar la serie del termociclador.

Nota importante: Los componentes liofilizados tras la disolución en componente C (agua grado molecular) no estarán estables más de 3 horas. Mantener en hielo o a una temperatura de 2 °C a 8 °C.

Al final de la jornada laboral, desechar adecuadamente los materiales sobrantes de los puntos de dilución STD.

El volumen no utilizado de Componente B, STD y de IC puede congelarse a -20 °C y usarse como se indica en el apartado E.

N.3 Programación del instrumento

Para la programación del instrumento, consultar el manual de instrucciones del instrumento proporcionado por los fabricantes.

<u>Nota importante:</u> Para Mx3000P ajustar "Ajuste de ganancia del filtro": ROX = x1, FAM = x8, HEX/JOE = x1. (véase el manual de instrucciones del software $MxPro^{TM}$ QPCR, pág. 41)

N.3.1 Perfil térmico

El perfil térmico se indica en la siguiente tabla:

Fase	Ciclo	Temp.	Tiempo
1	1	50°C	2 min
2	1	95°C	10 min
3	50	95°C	15 s
	30	60°C (*)	1 min

NOTA IMPORTANTE: (*) fase para la adquisición de datos en tiempo real

ADVERTENCIA: Prestar atención para ajustar el termociclador Real-Time con el perfil térmico correcto siguiendo las instrucciones del manual de los instrumentos suministrado por el fabricante.

N.3.2 Selección de los detectores

Siguiendo los manuales de instrucciones de los termocicladores Real-Time sugeridos (ABI 7500, MX3000P Stratagene y BioRad CFX96), seleccionar los detectores indicados en la siguiente tabla:

Detección	Indicador	Templador
VBK	FAM	TAMRA
Control Interno (IC)	JOE/ VIC	No fluorescente
Referencia pasiva	ROX	No presente

ADVERTENCIA: Prestar atención para ajustar el termociclador Real-Time con la configuración correcta siguiendo las instrucciones del manual de los instrumentos suministrado por el fabricante.

O. ESQUEMA DEL ENSAYO.

A continuación se ofrece un ejemplo del esquema de dispensación para análisis cuantitativo:

Microplaca o tubos

	1	2	3
Α	STD 1 25000 copias/ μl	Muestra 4	
В	STD 2 2500 copias/ μΙ	Muestra 5	
С	STD 3 250 copias/ µl	Muestra 6	
D	STD 4 25 copias/ µl	Muestra 7	
E	NTC	Muestra 8	
F	Muestra 1	Muestra 9	
G	Muestra 2	Muestra 10	
Н	Muestra 3	Muestra 11	

Leyenda: NTC = Control negativo $\,$ STD 1,2,3,4 = Curva estándar de ADN de VBK, Muestra 1,2,etc. = Muestras en evaluación.

P. CONTROL DE CALIDAD INTERNO.

P.1 Configuración pre-análisis

Antes de iniciar el análisis:

 Ajustar la "línea de base" (nivel fluorescente del fondo) como se indica a continuación:

"Línea de base"	
ABI™PRISM® 7500 SDS Línea de base automática	
STRATAGENE™ MX3000P [®]	Línea de base adaptable Nota importante: No usar algoritmo Mx4000 v1.00 a v3.00
BIORAD™ CFX96®	Línea de base automática

 Ajustar manualmente el "Threshold" fluorescente FAM/JOE/VIC

"Threshold" fluorescente FAM					
ABI™PRISM® 7500 SDS 0.15					
STRATAGENE™ MX3000P®	0.15				
BIORAD™ CFX96®	400				

"Threshold" fluorescente JOE//VIC				
ABI™PRISM® 7500 SDS 0.1				
STRATAGENE™ MX3000P®	0.02			
BIORAD™ CFX96®	350			

P.2 Análisis de datos

Se realiza una comprobación en los calibradores STD cada vez que se usa el equipo para verificar si los valores Ct son los esperados e indicados en la siguiente tabla:

ABI™PRISM® 7500 SDS - BIORAD™ CFX96®			
Comprobar FAM Exigencia			
STD 1	20 < Ct (Threshold Cycle) < 23		

STRATAGENE™ MX3000P®			
Comprobar FAM Exigencia			
STD 1	20.5 < Ct (Threshold Cycle) < 23.5		

Además, los valores de pendiente y R2 se comprueban para verificar la calidad de la serie. Se deben cumplir los siguientes requisitos.

Comprobar FAM	Exigencia
Pendiente	-3,1 < Pendiente < -3,9

Comprobar FAM	Exigencia	
Eficiencia	$R^2 > 0.98$	

Q. INTERPRETACIÓN DE LOS RESULTADOS Y SOLUCIÓN DE PROBLEMAS

Para cada muestra, se asume la fluorescencia FAM (valor Ct positivo/negativo) y la fluorescencia JOE del control interno para validar la detección de VBK, como se describe en la siguiente tabla:

Los siguientes resultados son posibles:

VBK FAM	JOE/VIC del control interno	Resultado del ensayo
MUESTRA POSITIVA	20 < Ct < 40	CORRECTO
	Ct > 40 o indeterminada	CORRECTO*
	20 < Ct < 40	CORRECTO
MUESTRA NEGATIVA	Ct > 40 o indeterminada	INVÁLIDO**

^{*}Una concentracióni de ADN de VBK superior a 1000 copias/µl (señal FAM positiva) puede dar lugar a una señal de fluorescencia REDUCIDA o AUSENTE del control interno (IC) debido a la competencia de reactivos.

**En este caso, han aparecido problemas durante la fase de amplificación (amplificación ineficiente o ausente) o durante la fase de extracción (presencia de inhibidores o muestra inicial con número insuficiente de células) que podrían dar lugar a resultados incorrectos y falsos negativos. El procedimiento de prueba debe repetirse empezando desde la fase de extracción, utilizando una muestra fresca procedente del paciente.

Por cada muestra positiva detectada por el equipo con código BKVDNAQT.CE, se puede aplicar una cuantificación correcta de la carga viral entre 2.5E+05 y 1,2E+00 copias/ul con los instrumentos ABI PRISM 7500 SDS y BIORAD CFX96 y entre 2.5E+05 y 2.0E+00 copias/ul con los instrumentos STRATAGENE MX3000P.

La carga viral de VBK debe expresarse como se indica en la siguiente tabla:

ABI™PRISM® 7500 SDS - BIORAD™ CFX96®				
Datos de la serie de la Carga viral de VBK (copias/μl) (copias/μl)				
Cantidad > 2.5E+05	Carga viral de VBK > 2.5E+05			
1,2E00 < Cantidad < 2.5E+05	CUANTIFICACIÓN			
Cantidad < 1,2E+00	Carga viral de VBK < 1,2E+00			

STRATAGENETM Mx3000P®				
Dati campione della sessione di analisi per il BKV (copie/μl)	Carico virale BKV (copie/μl)			
Cantidad > 2.5E+05	Carga viral de VBK > 2.5E+05			
2.0E00 < Cantidad < 2.5E+05	CUANTIFICACIÓN			
Cantidad < 2.0E+00	Carga viral de VBK < 2.0E+00			

Nota importante: Para la cuantificación de las muestras, consultar la <u>sección R</u>

Los resultados obtenidos con el equipo BKVDNA.CE deben ser interpretados por el responsable del laboratorio, teniendo en cuenta los síntomas clínicos de los pacientes y los demás marcadores de infección del laboratorio.

Los siguientes resultados son posibles:

Tabla de solución de problemas

	<u>FA</u> <u>M</u>	일반으	Resultado	COMPROBAR
MUESTRA desconocida	+	+/-	RESULTADO CORRECTO <u>Positivo</u>	MPORTANTE: Una concentracióni de ADN de VBK superior a 1000 copias/µl (señal FAM positiva) puede dar lugar a una señal de

				fluorescencia REDUCIDA o AUSENTE del control interno (IC) debido a la competencia de reactivos.
MUESTRA desconocida	-	-	¡ATENCIÓN! POSIBILIDAD DE: Inhibición, error en el procedimiento o mal funcionamiento de los instrumentos	1. que los componentes se hayan preparado correctamente; 2. que no se hayan cometido errores en el procedimiento de ensayo; 3. que los tintes de detección seleccionados sean correctos: FAM para la detección de VBK y JOE/VIC para la detección de IC; 4. que el análisis se haya realizado con la configuración correct ade instrumento; 5. que el equipo se haya almacenado correctamente; 6. que ningún inhibidor PCR potencial haya contaminado el tubo; 7. que el procedimiento de extracción se haya realizado correctamente.
MUESTRA desconocida	-	+	RESULTADO CORRECTO Negativo	
STD	+	+/-	RESULTADO CORRECTO	1.Una concentracióni de ADN de VBK superior a 1000 copias/µl (señal FAM positiva) puede dar lugar a una señal de fluorescencia REDUCIDA o AUSENTE del control interno (IC) debido a la competencia de reactivos 2. La señal JOE/VIC negativa solo es correcta cuando el control interno (IC) se utiliza como control de extracción.
STD	-	-	¡ATENCIÓN! POSIBILIDAD DE: Error en el pipeteado o en el procedimiento	1. que los componentes se hayan preparado correctamente; 2. que no se hayan cometido errores en el procedimiento de ensayo; 3. que los tintes de detección seleccionados sean correctos: FAM para la detección de VBK y JOE/ VIC para la detección de IC; 4. que el análisis se haya realizado con la configuración correcta del instrumento; 5. que el equipo se haya almacenado correctamente; 6. que ningún inhibidor PCR potencial haya contaminado el tubo;
STD	-	+	¡ATENCIÓN! POSIBILIDAD DE: Error en el pipeteado o en el procedimiento	1. que los componentes se hayan preparado correctamente; 2. que no se hayan cometido errores en el procedimiento de ensayo; 3. que los tintes de detección seleccionados sean correctos: FAM para la detección de VBK y JOE/ VIC para la detección de IC; 4. que el análisis se haya realizado con la configuración correcta del instrumento; 5. que el equipo se haya almacenado correctamente;
NTC	-	+/-	RESULTADO CORRECTO	La señal JOE/VIC negativa solo es correcta cuando el control interno (IC) se utiliza como control de extracción.

				que los componentes se hayan preparado
				correctamente;
			¡ATENCIÓN!	que no se hayan cometido errores en el
NTC	+	+/-	POSIBILIDAD DE:	procedimiento de ensayo; 3. que el lugar de trabajo y
			Contaminación	los instrumentos se descontaminen a intervalos regulares;
				4.que el equipo se haya almacenado correctamente.

Notas importantes:

- La interpretación de los resultados debe hacerse bajo la supervisión del responsable del laboratorio para reducir el riesgo de errores de juicio y de interpretación.
- Al transmitir los resultados de la prueba del laboratorio a un centro informático, debe prestarse mucha atención para evitar la transferencia de datos erróneos.

Si los resultados de la prueba coinciden con los requisitos del <u>RESULTADO DEL ENSAYO CORRECTO</u> establecidos anteriormente, pasar a la siguiente sección.

Si aparecen uno o más de los problemas descritos en la tabla anterior, tras la comprobación, informar al supervisor de cualquier problema residual para tomar las medidas pertinentes.

R. CUANTIFICACIÓN

Los calibradores STD se tratan como muestras del paciente y se usa el mismo volumen, 10 µl, durante la fase de amplificación. La concentración de los calibradores STD se expresa en copias/µl. La **concentración del genoma viral por ml** para cada muestra del paciente se calcula aplicando la siguiente fórmula:

Resultados (copias/ml) ≡ <u>copias/μl (datos de la serie) x Volumen muestra de elución (μl)</u> Volumen de extracción de muestras (ml)

Ejemplo:

Resultados (copias/ml) ≡ 150 x 100

0.2

Resultados (copias/ml) ≡ 7,5 E+04

S. PRESTACIONES

La evaluación de los rendimientos se ha realizado de acuerdo con lo indicado en las Especificaciones técnicas internas (ITS). La evaluación del rendimiento se llevó a cabo en laboratorios DiaPro con materiales suministrados por los laboratorios clínicos de referencia.

S.1 SENSIBILIDAD ANALÍTICA

La sensibilidad analítica se puede expresar como Límite de detección y como Límite de cuantificación.

Límite de detección (LOD): es la cantidad mínima de sustancia que puede detectarse por el sistema con una probabilidad establecida.

Para las pruebas NAT se expresa como la concentración mínima del **analito** que, tras probarse en múltiples repeticiones, da un resultado positivo.

El **límite de detección (LOD)** se determina probando diluciones en serie que contienen concentraciones conocidas del analito.

El **LOD** es la concentración mínima de analito que puede detectarse de forma consistente (p. ej., en \geq 95% de las muestras en condiciones rutinarias del laboratorio).

En el equipo con código BKVDNAQT.CE, el **LOD** se ha determinado mediante el análisis de 24 réplicas, 8 réplicas en tres series distintas, de la dilución mínima del analito que puede detectarse en el 100% de éstas.

Los resultados son los siguientes:

Límite de detección			
ABI™PRISM® 7500 SDS	1.2 copias/ μl		
STRATAGENE™ MX3000P®	1.2 copias/ μl		
BIORAD™ CFX96®	1.2 copias/ μl		

Esto significa que existe una probabilidad del 100% de detectar una concentración de 1.2 copias/µl con los instrumentos ABI PRISM 7500 SDS, STRATAGENE MX3000P, BIORAD CFX96.

S.1.1 Límite de cuantificación

El **límite de cuantificación** se determinó midiendo la **linealidad**, el **rango dinámico** y la **reproducibilidad**.

La **linealidad** es la medida del grado en que una curva se aproxima a la línea recta. Se expresa con el valor **PENDIENTE**.

El rango dinámico es la extensión de concentraciones de analito para la que el valor de salida final (ciclo umbral Ct) del sistema es directamente proporcional a la concentración de analito, con confiabilidad y precisión aceptables.

Los límites del rango dinámico son los límites inferior y superior de cuantificación (Límite de cuantificación).

En el equipo con código BKVDNAQT.CE, se preparó una curva de dilución límite con copias/ul definidas de un plásmido que porta la secuencia viral meta específica. Los puntos de dilución se probaron en el sistema analítico y se determinaron sus Ct (ciclo umbral).

El **límite de cuantificación** superior es 5.39log₁₀ (2.5E+05 copias/ul) y el límite de cuantificación inferior es 0.08log₁₀ (1.2E00 copias/ul) con los instrumentos ABI PRISM 7500 SDS y BIORAD CFX96.

El **límite de cuantificación** superior es 5.39log₁₀ (2.5E+05 copias/ul) y el límite de cuantificación inferior es 0.30log₁₀ (2E00 copias/ul) con los instrumentos STRATAGENE Mx3000P.

S.2 ESPECIFICIDAD ANALÍTICA

La especificidad analítica es la capacidad de un método de detectar y cuantificar sólo el marcador meta.

La especificidad analítica del ensayo de ADN de VBK se ha estudiado del siguiente modo:

- 1.El juego de cebador/sonda se ha elegido analizando la secuencia meta del genoma con un software adecuado (Lionsoft v.1.0 suministrado por Biotools y Primer Express v.3.0 suministrado por Applied Biosystems Inc.).
- 2. El juego de cebador/sonda y la secuencia meta del genoma han sido controlados por el software "BLAST" para comprobar si alguna de las secuencias nucleótidas depositadas en los bancos genómicos a nivel mundial tiene alguna homología con el VBK, y por el software "ClustalX" para comparar las secuencias meta del genoma de los distintos genotipos de VBK.
- La especificidad se mejoró mediante la selección de condiciones de reacción estrictas.
- 4. Las muestras procedentes de pacientes con infecciones debidas a organismos que interfieren potencialmente se obtuvieron de un centro clínico de referencia.

Los resultados se indican en la tabla siguiente:

Organismo	Resultado
JCV	negativo
CMV	negativo
EBV	negativo
VZV	negativo
HHV8	negativo
HHV6	negativo
HSV1	negativo
HSV2	negativo

S.3 SENSIBILIDAD Y ESPECIFICIDAD DIAGNÓSTICA

S.3.1 Especificidad diagnóstica:

La especificidad diagnóstica es la probabilidad de que el dispositivo dé un resultado negativo en ausencia del marcador meta. Así, la muestra negativa verdadera es una muestra conocida como negativa para el marcador meta y clasificada correctamente por el dispositivo

Este parámetro se estudió examinando 10 extractos de muestras negativas de ADN de VBK:

ESPECIFICIDAD %	100
TOTAL MUESTRAS	10
FALSOS POSITIVOS	0
NEGATIVOS VERDADEROS	10

Tomando como base los resultados obtenidos, la especificidad diagnóstica del sistema se ha calculado en el 100%.

S.3.2. Sensibilidad diagnóstica

La sensibilidad diagnóstica es la probabilidad de que el dispositivo dé un resultado positivo en presencia del marcador meta. Así, la muestra **positiva verdadera** es una muestra conocida como positiva para el marcador meta y clasificada correctamente por el dispositivo.

En el equipo con código BKVDNAQT.CE, este parámetro se estudió examinando 8 muestras positivas de ADN de VBK en duplicados en la misma serie. También se comprobaron muestras del panel QCMD 2010 y QCMD 2011 virus de JC y virus BK .A continuación, se calculó el porcentaje (%) de muestras positivas.

A continuación, se calculó el porcentaje (%) de muestras positivas.

SENSIBILIDAD %	100
TOTAL MUESTRAS	8
FALSOS NEGATIVOS	0
POSITIVOS VERDADEROS	8

Tomando como base los resultados obtenidos, la sensibilidad diagnóstica del sistema se ha calculado en el 100%.

Sensibilidad diagnóstica	100 %
Especificidad diagnóstica	100 %

S. 4 PRECISIÓN

La precisión muestra el grado de fiabilidad del sistema. Cada procedimiento de medición tiene una variación aleatoria inherente denominada "error aleatorio". El error aleatorio no tiene un valor numérico, sino que se determina por dispersión de la medición como desviación estándar (DevST) y variación de coeficiente (CV%). Normalmente, la precisión de un ensayo se refiere a la concordancia entre mediciones repetidas del mismo material.

En el equipo con código BKVDNAQT.CE, la **precisión** se expresó como variabilidad intraensayo y variabilidad interensayo. Se probaron 4 puntos de dilución en 8 réplicas en la misma serie (intraensayo) y en tres series distintas (interensayo).

Tomando como base los resultados obtenidos, se calculó la variabilidad intraensayo e interensayo.

En ausencia de parámetros establecidos en la Directiva IVD europea, CTS, hemos identificado el siguiente valor de aceptabilidad para el ADN de VBK:

Variación de coeficiente de intraensayo (CV%) ≤ 10%. Variación de coeficiente de interensayo (CV%) ≤ 10%.

T. LIMITACIONES

El usuario final de este equipo deberá leer cuidadosamente y entender este manual de instrucciones. El seguimiento estricto del protocolo es fundamental para obtener unos resultados fiables. Especialmente, el pipeteado preciso de muestra y reactivo, la aplicación de un flujo de trabajo correcto junto con una programación cuidadosa de la fase de termociclado, son esenciales para la detección y la cuantificación precisas y reproducibles de ADN de VBK.

La determinación de ADN de VBK en la muestra de un paciente tiene numerosas implicaciones médicas, sociales, psicológicas y económicas.

Se recomienda que la confidencialidad, el asesoramiento y la evaluación médica apropiados, se consideren un aspecto esencial de la secuencia de prueba.

U. BIBLIOGRAFÍA

- 1. Polyomavirus nephropathy: a current perspective and clinical considerations. Wiseman AC. Am J Kidney Dis. 2009 Jul;54(1):131-42.
- 2. Update on human polyomavirus BK nephropathy.Cimbaluk D, Pitelka L, Kluskens L, Gattuso P. Diagn Cytopathol. 2009 Oct;37(10):773-9.
- 3. From plasma BK viral load to allograft damage: rule of thumb for estimating the intrarenal cytopathic wear.Funk GA, Hirsch HH. Clin Infect Dis. 2009 Sep 15;49(6):989-90.
- 4. The decade of polyomavirus BK-associated nephropathy: state of affairs.Ramos E, Drachenberg CB, Wali R, Hirsch HH. Transplantation. 2009 Mar 15;87(5):621-30
- 5. Virological, epidemiological and pathogenic aspects of human polyomaviruses. Hurault de Ligny B, Godin M, Lobbedez T, El Haggan W, Pujo M, Etienne I, Ryckelynck JP. Presse Med. 2003 Apr 12;32(14):656-8.
- 6. Molecular and clinical perspectives of polyomaviruses: emerging evidence of importance in non-kidney transplant populations. Vilchez RA, Kusne S. Liver Transpl. 2006 Oct;12(10):1457-63.

5. Símbolos

LEYENDA					
REF	Código del producto	\	Temperatura de almacenamiento		
IVD	Dispositivo de diagnóstico in vitro	i	Ver instrucciones de uso		
LOT	N.º de lote	\$	Fabricante		
> <	Fecha de caducidad	Σ _Σ	Número de pruebas		
(€	Marca de conformidad CE	2	Fecha de fabricación		

Todos los productos de diagnóstico in vitro fabricados por la empresa son controlados por un sistema certificado de control de calidad aprobado conforme a la norma ISO 13485. Cada lote se somete a un control de calidad y se libera al mercado únicamente si se ajusta a las especificaciones técnicas y criterios de aceptación de la CE.

10 Rev. 6

DISTRIBUIDOR

4BShop Lab Srls

info@4BShopLab.com

www.4BShopLab.com

+39.0371.18.56.643

FABRICANTE

Dia.Pro - Diagnostic Bioprobes Srl

EN ISO 13485:2013 Certified

